ESP32-PICO-D4 Datasheet

Espressif Systems

August 31, 2017

About This Guide

This document provides an introduction to the specifications of the ESP32-PICO-D4 module.

The document structure is as follows:

Chapter	Title	Subject
Chapter 1	Overview	An overview of the ESP32-PICO-D4 module.
Chapter 2	Pin Definitions	Pinout and pin descriptions.
Chapter 3	Functional Description	Description of functional modules and protocols.
Chapter 4	Electrical Characteristics	Electrical characteristics and specifications of ESP32-PICO-D4.
Chapter 5	Schematics	Schematics of ESP32-PICO-D4.
Chapter 6	Package Information	Package information of ESP32-PICO-D4.
Chapter 7	Learning Resources	ESP32-related must-read materials and must-have resources.

Release Notes

Date	Version	Release notes
2017.08	V1.0	First release.

Documentation Change Notification

Espressif provides email notifications to keep customers updated on changes to technical documentation. Please subscribe here.

Certificates

Download certificates for Espressif products from here.

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice. THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein. The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2017 Espressif Inc. All rights reserved.

Contents

1	Overview	1
2 2.1 2.2 2.3	•	3 3 3 5
3.1 3.2 3.3 3.4 3.5	Crystal Oscillators Peripherals and Sensors	7 7 7 7 8 8
4 4.1 4.2 4.3	Bluetooth LE Radio 4.3.1 Receiver 4.3.2 Transmit	10 10 10 11 11 11
5 6	Schematics Peripheral Schematics	13
7	Package Information	15
8 8.1 8.2	Learning Resources Must-Read Documents Must-Have Resources	16 16 16

List of Tables

1	ESP32-PICO-D4 Specifications	1
2	Pin Description	3
3	Strapping Pins	6
4	Functionalities Depending on the Power Modes	8
5	Power Consumption by Power Modes	g
6	Absolute Maximum Ratings	10
7	Wi-Fi Radio Characteristics	10
8	Receiver Characteristics – BLE	11
a	Transmit Characteristics - BLF	11

List of Figures

1	ESP32-PICO-D4 Pin Layout	3
2	Reflow Profile	12
3	ESP32-PICO-D4 Module Schematics	13
4	ESP32-PICO-D4 Module Peripheral Schematics	14
5	ESP32-PICO-D4 Package	15

1. Overview

The ESP32-PICO-D4 is a System-in-Package (SIP) module that is based on ESP32, providing complete Wi-Fi and Bluetooth functionalities. The module has a size as small as 7.0±0.1 mm×7.0±0.1 mm×0.94±0.1 mm, thus requiring minimal PCB area. The module integrates a 4-MB SPI flash.

At the core of this module is the ESP32 chip*, which is a single 2.4 GHz Wi-Fi and Bluetooth combo chip designed with TSMC's 40 nm ultra-low power technology. ESP32-PICO-D4 integrates all peripheral components seamlessly, including a crystal oscillator, flash, filter capacitors and RF matching links in one single package. Given that no other peripheral components are involved, module welding and testing is not required either. As such, ESP32-PICO-D4 reduces the complexity of supply chain and improves control efficiency.

With its ultra-small size, robust performance and low-energy consumption, ESP32-PICO-D4 is well suited for any space-limited or battery-operated applications, such as wearable electronics, medical equipment, sensors and other IoT products.

Note:

* For details on ESP32, please refer to the document ESP32 Datasheet.

Table 1 provides the specifications of the ESP32-PICO-D4 module.

Table 1: ESP32-PICO-D4 Specifications

Categories	Items	Specifications		
		802.11 b/g/n/e/i (802.11n up to 150 Mbps)		
\\\/i_Ei	Protocols	A-MPDU and A-MSDU aggregation and 0.4 μ s guard interval		
VVI-1 1		support		
	Frequency range	2.4 ~ 2.5 GHz		
Wi-Fi Bluetooth Hardware	Protocols	Bluetooth V4.2 BR/EDR and BLE specification		
		NZIF receiver with -97 dBm sensitivity		
Wi-Fi Bluetooth	Radio	Class-1, class-2 and class-3 transmitter		
		AFH		
	Audio	CVSD and SBC		
		ADC, LNA pre-amplifier, DAC, touch sensor, SD/SDIO/MMC		
	Module interface	Host Controller, SPI, SDIO/SPI Slave Controller, EMAC, mo-		
	Wodule interface	tor PWM, LED PWM, UART, I2C, I2S, infrared remote con-		
		troller, GPIO		
	On-chip sensor	Hall sensor, temperature sensor		
	On-board clock	40 MHz crystal		
Hardware	Operating voltage/Power supply	2.3 ~ 3.6V		
riardward	Operating current	Average: 80 mA		
	Minimum current delivered by	500 mA		
	power supply	300 IIIA		
	Operating temperature range	-40°C ~ 85°C		
	Ambient temperature range	Normal temperature		
	Package size	7.0±0.1 mm x 7.0±0.1 mm x 0.94±0.1 mm		

Categories	Items	Specifications	
	Wi-Fi mode	Station/SoftAP/SoftAP+Station/P2P	
	Wi-Fi security	WPA/WPA2/WPA2-Enterprise/WPS	
	Encryption	AES/RSA/ECC/SHA	
	Eirmwara uparada	UART Download / OTA (via network / download and write	
Software	Firmware upgrade	firmware via host)	
	Software development	Supports Cloud Server Development / SDK for custom	
	Software development	firmware development	
	Network protocols	IPv4, IPv6, SSL, TCP/UDP/HTTP/FTP/MQTT	
	User configuration	AT instruction set, cloud server, Android/iOS app	

2. Pin Definitions

2.1 Pin Layout

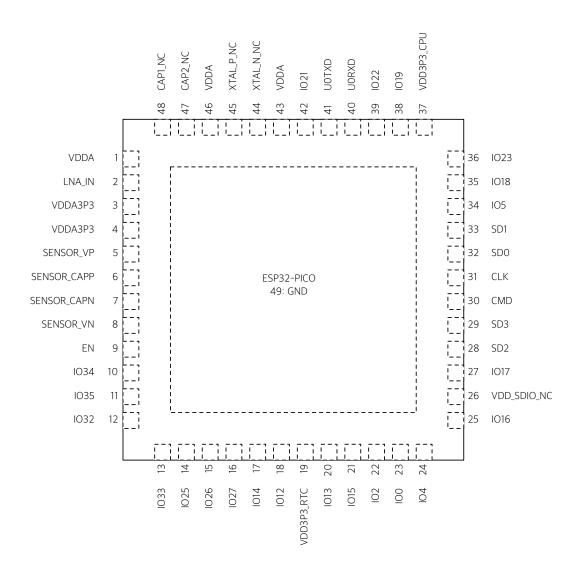


Figure 1: ESP32-PICO-D4 Pin Layout

2.2 Pin Description

The ESP32-PICO-D4 module has 49 pins. See pin definitions in Table 2.

Table 2: Pin Description

Name	No.	Type	Function		
Analog					
VDDA	1	Р	Analog power supply (2.3V ~ 3.6V)		
LNA_IN	2	I/O	RF input and output		
VDDA3P3	3	Р	Power supply amplifier (2.3V ~ 3.6V)		
VDDA3P3	4	Р	Power supply amplifier (2.3V ~ 3.6V)		

Name	No.	Туре	Function	
			GPIO36, ADC_PRE_AMP, ADC1_CH0, RTC_GPIO0	
SENSOR_VP	5	1	Note: Connects a 270 pF capacitor from SENSOR_VP to SEN-	
			SOR_CAPP, when used as ADC_PRE_AMP.	
			GPIO37, ADC_PRE_AMP, ADC1_CH1, RTC_GPIO1	
SENSOR_CAPP	6	1	Note: Connects a 270 pF capacitor from SENSOR_VP to SEN-	
			SOR_CAPP, when used as ADC_PRE_AMP.	
			GPIO38, ADC1_CH2, ADC_PRE_AMP, RTC_GPIO2	
SENSOR_CAPN	7	1	Note: Connects a 270 pF capacitor from SENSOR_VN to SEN-	
			SOR_CAPN, when used as ADC_PRE_AMP.	
			GPIO39, ADC1_CH3, ADC_PRE_AMP, RTC_GPIO3	
SENSOR_VN	8	1	Note: Connects a 270 pF capacitor from SENSOR_VN to SEN	
			SOR_CAPN, when used as ADC_PRE_AMP.	
			Chip Enable (Active High)	
			High: On; chip works properly	
EN	9		Low: Off; chip works at the minimum power	
			Note: Do not leave CHIP_PU pin floating	
IO34	10	1	ADC1 CH6, RTC GPIO4	
IO35	11	1	ADC1_CH7, RTC_GPIO5	
			32K_XP (32.768 kHz crystal oscillator input), ADC1_CH4,	
IO32	12	I/O	TOUCH9, RTC_GPIO9	
			32K_XN (32.768 kHz crystal oscillator output), ADC1_CH5,	
IO33	13	I/O	TOUCH8, RTC_GPIO8	
IO25	14	I/O	GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0	
IO26	15	1/0	GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1	
1027	16	1/0	GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV	
.02.	1.0	"	ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK,	
IO14	17	I/O	HS2_CLK, SD_CLK, EMAC_TXD2	
			ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ,	
IO12	18	I/O	HS2 DATA2, SD DATA2, EMAC TXD3	
VDD3P3_RTC	19	Р	RTC IO power supply input (1.8V ~ 3.6V)	
VDD0i 0_iii0	10	'	ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID,	
IO13	20	I/O	HS2_DATA3, SD_DATA3, EMAC_RX_ER	
			ADC2_CH3, TOUCH3, RTC_GPIO13, MTDO, HSPICSO,	
IO15	21	I/O	HS2_CMD, SD_CMD, EMAC_RXD3	
			ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATA0,	
IO2	22	I/O	SD_DATA0	
100	23	I/O		
			EMAC_TX_CLK	
IO4	24	I/O	ADC2_CH0, TOUCH0, RTC_GPI010, HSPIHD, HS2_DATA1,	
1010	0.5	1/0	SD_DATA1, EMAC_TX_ER	
1016	25	I/O	GPIO16, HS1_DATA4, U2RXD, EMAC_CLK_OUT	
VDD_SDIO_NC	26	-	NC	
1017	27	1/0	GPIO17, HS1_DATA5, U2TXD, EMAC_CLK_OUT_180	
SD2	28	1/0		
SD3	29	I/O	GPIO10, SD_DATA3, SPIWP, HS1_DATA3, U1TXD	

Name	No.	Туре	Function
CMD	30	1/0	GPIO11, SD_CMD, SPICS0, HS1_CMD, U1RTS
CLK	31	1/0	GPIO6, SD_CLK, SPICLK, HS1_CLK, U1CTS
SD0	32	1/0	GPIO7, SD_DATA0, SPIQ, HS1_DATA0, U2RTS
SD1	33	I/O	GPIO8, SD_DATA1, SPID, HS1_DATA1, U2CTS
IO5	34	1/0	GPIO5, VSPICS0, HS1_DATA6, EMAC_RX_CLK
IO18	35	I/O	GPIO18, VSPICLK, HS1_DATA7
IO23	36	I/O	GPIO23, VSPID, HS1_STROBE
VDD3P3_CPU	37	Р	CPU IO power supply input (1.8V ~ 3.6V)
IO19	38	1/0	GPIO19, VSPIQ, U0CTS, EMAC_TXD0
IO22	39	1/0	GPIO22, VSPIWP, UORTS, EMAC_TXD1
UORXD	40	I/O	GPIO3, U0RXD, CLK_OUT2
U0TXD	41	1/0	GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2
IO21	42	I/O	GPIO21, VSPIHD, EMAC_TX_EN
VDDA	43	Р	Analog power supply (2.3V ~ 3.6V)
XTAL_N_NC	44	-	NC
XTAL_P_NC	45	-	NC
VDDA	46	Р	Digital power supply for PLL (2.3V ~ 3.6V)
CAP2_NC	47	-	NC
CAP1_NC	48	-	NC
GND	49	Р	Ground

Note:

Pins IO16, IO17, CMD, CLK, SD0 and SD1 are used for connecting the embedded flash, and are not recommended for other uses.

2.3 Strapping Pins

ESP32 has five strapping pins, which can be seen in Section 5 Schematics:

- MTDI
- GPI00
- GPI02
- MTDO
- GPI05

Software can read the value of these five bits from the register "GPIO_STRAPPING".

During the chip power-on reset, the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down. The strapping bits configure the device boot mode, the operating voltage of VDD_SDIO and other system initial settings.

Each strapping pin is connected with its internal pull-up/pull-down during the chip reset. Consequently, if a strapping pin is unconnected or the connected external circuit is high-impendence, the internal weak pull-up/pull-down will determine the default input level of the strapping pins.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or apply the host MCU's GPIOs to control the voltage level of these pins when powering on ESP32.

After reset, the strapping pins work as the normal functions pins.

Refer to Table 3 for detailed boot modes' configuration by strapping pins.

Table 3: Strapping Pins

Voltage of Internal LDO (VDD_SDIO)								
Pin	Default	3.3	3V	1.8V				
MTDI	Pull-down	()	-	1			
			Booting Mode					
Pin	Default	SPLI	Boot	Downlo	ad Boot			
GPIO0	Pull-up	-	1	()			
GPIO2	Pull-down	Don't	i-care	0				
		Debugging	g Log on UOTXD During	g Booting				
Pin	Default U0TXD Toggling U0TXD Silent							
MTDO	TDO Pull-up 1 0							
			Timing of SDIO Slave					
Pin	Default	Falling-edge Input	Falling-edge Input	Rising-edge Input	Rising-edge Input			
ГШ	Delault	Falling-edge Output Rising-edge Output		Falling-edge Output	Rising-edge Output			
MTDO	Pull-up	0	0	1	1			
GPIO5	Pull-up	0	1	0	1			

Note:

Firmware can configure register bits to change the settings of "Voltage of Internal LDO (VDD_SDIO)" and "Timing of SDIO Slave", after booting.

3. Functional Descriptions

This chapter describes the modules integrated in ESP32-PICO-D4, and their functions.

3.1 CPU and Internal Memory

ESP32 contains two low-power Xtensa® 32-bit LX6 microprocessors. The internal memory includes:

- 448 KB of ROM for booting and core functions.
- 520 KB (8 KB RTC FAST Memory included) of on-chip SRAM for data and instruction.
 - 8 KB of SRAM in RTC, which is called RTC FAST Memory and can be used for data storage; it is accessed by the main CPU during RTC Boot from the Deep-sleep mode.
- 8 KB of SRAM in RTC, which is called RTC SLOW Memory and can be accessed by the co-processor during the Deep-sleep mode.
- 1 kbit of eFuse, of which 256 bits are used for the system (MAC address and chip configuration) and the remaining 768 bits are reserved for customer applications, including Flash-Encryption and Chip-ID.

3.2 External Flash and SRAM

ESP32 supports up to four 16-MB of external QSPI flash and SRAM with hardware encryption based on AES to protect developers' programs and data.

ESP32 can access the external QSPI flash and SRAM through high-speed caches.

- Up to 16 MB of external flash are memory-mapped onto the CPU code space, supporting 8, 16 and 32-bit access. Code execution is supported.
- Up to 8 MB of external flash/SRAM are memory-mapped onto the CPU data space, supporting 8, 16 and 32-bit access. Data-read is supported on the flash and SRAM. Data-write is supported on the SRAM.

The ESP32-PICO-D4 module integrates 4 MB of external SPI flash. The 4-MB SPI flash can be memory-mapped onto the CPU code space, supporting 8, 16 and 32-bit access. Code execution is supported.

Note:

The operating voltage of ESP32-PICO-D4's integrated external SPI flash is 3.3V. Therefore, the strapping pin MTDI should hold bit "0" during the module power-on reset.

3.3 Crystal Oscillators

ESP32-PICO-D4 integrates a 40 MHz crystal oscillator.

3.4 Peripherals and Sensors

Please refer to Section 4 Peripherals and Sensors in ESP32 Datasheet.

Note:

Users should note that pins of the embedded ESP32 chip, that are used for connecting peripherals, such as the flash or PSRAM, are not recommended for other uses. For details, please see Section 5 Schematics.

3.5 RTC and Power Consumption

With the use of advanced power management technologies, ESP32 can switch between different power modes (see Table 4).

Power modes

- Active mode: The chip radio is powered on. The chip can receive, transmit, or listen.
- Modem-sleep mode: The CPU is operational and the clock is configurable. The Wi-Fi/Bluetooth baseband and radio are disabled.
- Light-sleep mode: The CPU is paused. The RTC memory and RTC peripherals, as well as the ULP co-processor are running. Any wake-up events (MAC, host, RTC timer, or external interrupts) will wake up the chip.
- Deep-sleep mode: Only the RTC memory and RTC peripherals are powered on. Wi-Fi and Bluetooth connection data are stored in the RTC memory. The ULP co-processor can work.
- Hibernation mode: The internal 8-MHz oscillator and ULP co-processor are disabled. The RTC recovery memory is powered down. Only one RTC timer on the slow clock and some RTC GPIOs are active.
 The RTC timer or the RTC GPIOs can wake up the chip from the Hibernation mode.

Sleep Patterns

- Association sleep pattern: The power mode switches between the Active mode, Modem- and Lightsleep mode during this sleep pattern. The CPU, Wi-Fi, Bluetooth, and radio are woken up at predetermined intervals to keep Wi-Fi/BT connections alive.
- ULP sensor-monitored pattern: The main CPU is in the Deep-sleep mode. The ULP co-processor takes sensor measurements and wakes up the main system, based on the data collected from sensors.

Table 4: Functionalities Depending on the Power Modes

Power mode	Active	Modem-sleep	Light-sleep	Deep-sleep	Hibernation
Sleep pattern	Association sleep pattern		ULP sensor- monitored pattern	-	
CPU	ON	ON	PAUSE	OFF	OFF
Wi-Fi/BT baseband and radio	ON	OFF	OFF	OFF	OFF
RTC memory and RTC peripherals	ON	ON	ON	ON	OFF
ULP co-processor	ON	ON	ON	ON/OFF	OFF

The power consumption varies with different power modes/sleep patterns and work statuses of functional modules. Please see Table 5 for details.

Table 5: Power Consumption by Power Modes

Power mode	Description	Power consumption
	Wi-Fi Tx packet 14 dBm ~ 19.5 dBm	
Active (RF working)	Wi-Fi / BT Tx packet 0 dBm	Please refer to ESP32 Datasheet.
Active (Ai Working)	Wi-Fi / BT Rx and listening	
	Association sleep pattern (by Light-sleep)	1 mA ~ 4 mA @DTIM3
		Max speed 240 MHz: 30 mA ~ 50 mA
Modem-sleep	The CPU is powered on.	Normal speed 80 MHz: 20 mA ~ 25 mA
		Slow speed 2 MHz: 2 mA ~ 4 mA
Light-sleep	-	0.8 mA
	The ULP co-processor is powered on.	150 μA
Deep-sleep	ULP sensor-monitored pattern	100 μA @1% duty
	RTC timer + RTC memory	10 μΑ
Hibernation	RTC timer only	5 μΑ
Power off	CHIP_PU is set to low level, the chip is powered off	0.1 μΑ

Note:

- During Deep-sleep, when the ULP co-processor is powered on, peripherals such as GPIO and I2C are able to work.
- When the system works in the ULP sensor-monitored pattern, the ULP co-processor works with the ULP sensor periodically; ADC works with a duty cycle of 1%, so the power consumption is 100 μ A.

4. Electrical Characteristics

Note:

The specifications in this chapter have been tested under the following general condition: VDD = 3.3V, $T_A = 27$ °C, unless otherwise specified.

4.1 Absolute Maximum Ratings

Table 6: Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit
Power supply ¹	VDD	2.3	3.3	3.6	V
Minimum current delivered by	1	0.5			A
power supply	$ I_{VDD} $	0.5			
Input low voltage	V_{IL}	-0.3	-	$0.25 \times V_{IO}^2$	V
Input high voltage	V_{IH}	$0.75 \times V_{IO}^2$	-	V_{IO}^2 +0.3	V
Input leakage current	$ \cdot _{IL}$	-	-	50	nA
Input pin capacitance	C_{pad}	-	-	2	pF
Output low voltage	V_{OL}	-	-	$0.1 \times V_{IO}^2$	V
Output high voltage	V_{OH}	0.8×V _{IO} ²	-	-	V
Maximum output drive capability	$ _{MAX}$	_	-	40	mA
Storage temperature range	T_{STR}	-40	-	85	°C
Operating temperature range	T_{OPR}	-40	-	85	°C

^{1.} The power supplies include VDDA, VDD3P3, VDD3P3_RTC, VDD3P3_CPU, VDD_SDIO. The VDD_SDIO also supports 1.8V mode.

4.2 Wi-Fi Radio

Table 7: Wi-Fi Radio Characteristics

Description	Min	Typical	Max	Unit
Input frequency	2412	-	2484	MHz
Output impedance	-	50	-	Ω
Input reflection	-	-	-10	dB
	Tx power			
Output power of PA for 72.2 Mbps	13	14	15	dBm
Output power of PA for 11b mode	19.5	20	20.5	dBm
	Sensitivity			
DSSS, 1 Mbps	-	-98	-	dBm
CCK, 11 Mbps	-	-91	-	dBm
OFDM, 6 Mbps	-	-93	-	dBm

^{2.} V_{IO} is the power supply for a specific pad. More details can be found in the ESP32 Datasheet, Appendix IO_MUX. For example, the power supply for SD_CLK is the VDD_SDIO.

Description	Min	Typical	Max	Unit
OFDM, 54 Mbps	-	-75	-	dBm
HT20, MCS0	-	-93	-	dBm
HT20, MCS7	-	-73	-	dBm
HT40, MCS0	-	-90	-	dBm
HT40, MCS7	-	-70	-	dBm
MCS32	-	-89	-	dBm
Adjac	cent channel reje	ction		
OFDM, 6 Mbps	-	37	-	dB
OFDM, 54 Mbps	-	21	-	dB
HT20, MCS0	-	37	-	dB
HT20, MCS7	-	20	-	dB

4.3 Bluetooth LE Radio

4.3.1 Receiver

Table 8: Receiver Characteristics - BLE

Parameter	Conditions	Min	Тур	Max	Unit
Sensitivity @30.8% PER	-	-	-97	-	dBm
Maximum received signal @30.8% PER	-	0	-	-	dBm
Co-channel C/I	-	-	+10	-	dB
	F = F0 + 1 MHz	-	-5	-	dB
	F = F0 - 1 MHz	-	-5	-	dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz	-	-25	-	dB
Adjacent channel selectivity C/1	F = F0 - 2 MHz	-	-35	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0 - 3 MHz	-	-45	-	dB
	30 MHz ~ 2000 MHz	-10	-	-	dBm
Out of hand blocking performance	2000 MHz ~ 2400 MHz	-27	-	-	dBm
Out-of-band blocking performance	2500 MHz ~ 3000 MHz	-27	-	-	dBm
	3000 MHz ~ 12.5 GHz	-10	-	-	dBm
Intermodulation	-	-36	-	-	dBm

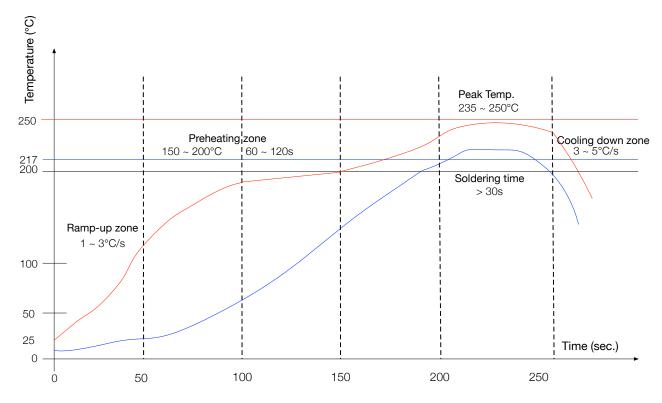

4.3.2 Transmit

Table 9: Transmit Characteristics - BLE

Parameter	Conditions	Min	Тур	Max	Unit
RF transmit power	-	-	0	-	dBm
Gain control step	-	-	±3	-	dBm
RF power control range	-	-12	-	+12	dBm

Parameter	Conditions	Min	Тур	Max	Unit
	F = F0 + 1 MHz	-	-14.6	-	dBm
	F = F0 - 1 MHz	-	-12.7	-	dBm
	F = F0 + 2 MHz	-	-44.3	-	dBm
Adjacent channel transmit power	F = F0 - 2 MHz	-	-38.7	-	dBm
Adjacent channel transmit power	F = F0 + 3 MHz	-	-49.2	-	dBm
	F = F0 - 3 MHz	-	-44.7	-	dBm
	F = F0 + > 3 MHz	-	-50	-	dBm
	F = F0 - > 3 MHz	-	-50	-	dBm
$\Delta f1_{\text{avg}}$	-	-	-	265	kHz
$\Delta f2_{max}$	-	247	-	-	kHz
$\Delta f 2_{\text{avg}}/\Delta f 1_{\text{avg}}$	-	-	-0.92	-	-
ICFT	-	-	-10	-	kHz
Drift rate	-	-	0.7	-	kHz/50 μs
Drift	-	-	2	-	kHz

4.4 Reflow Profile

Ramp-up zone — Temp.: <150°C Time: 60 ~ 90s Ramp-up rate: 1 ~ 3°C/s Preheating zone — Temp.: 150 ~ 200°C Time: 60 ~ 120s Ramp-up rate: 0.3 ~ 0.8°C/s Reflow soldering zone — Peak Temp.: 235 ~ 250°C (<245°C recommended) Time: 30 ~ 70s Cooling down zone — Temp.: 217 ~ 170°C Ramp-down rate: 3 ~ 5°C/s Solder — Sn&Ag&Cu Lead-free solder (SAC305)

Figure 2: Reflow Profile

5. Schematics

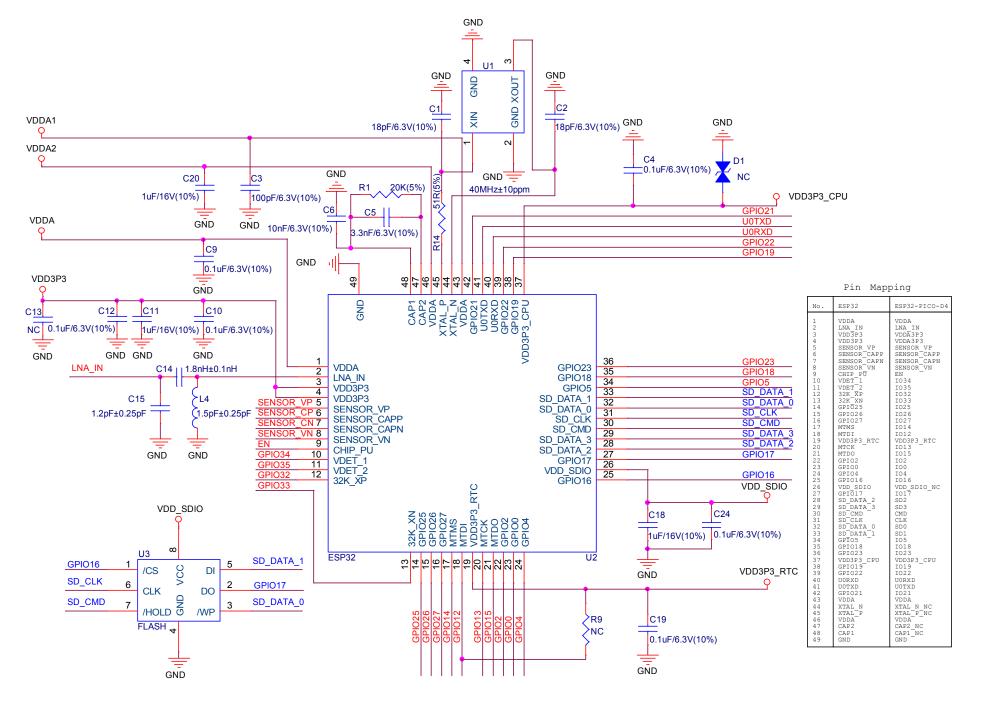
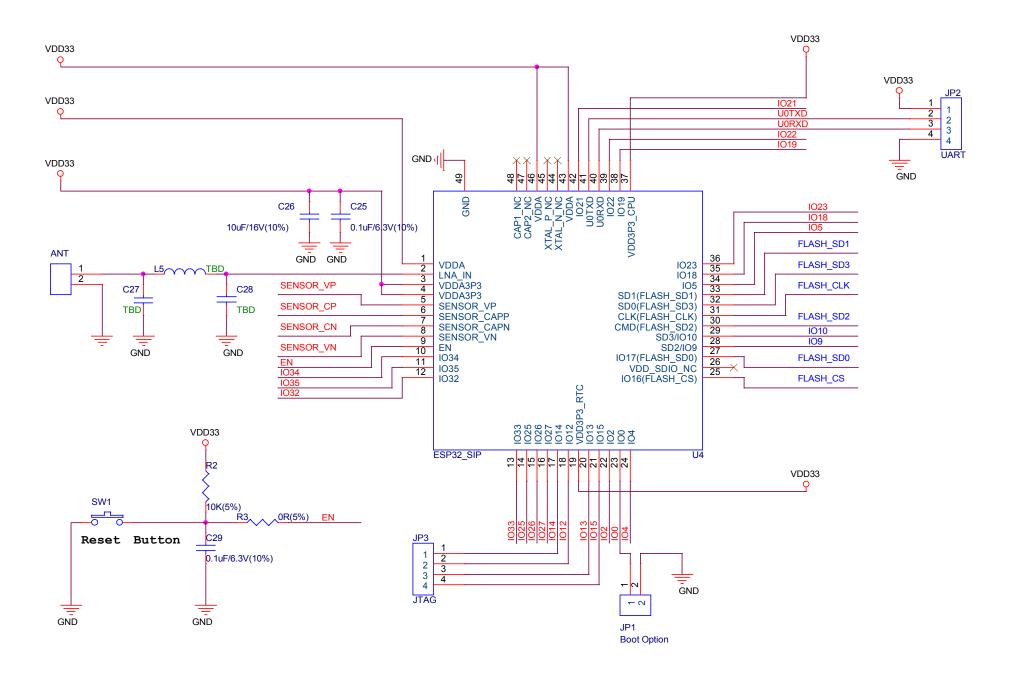
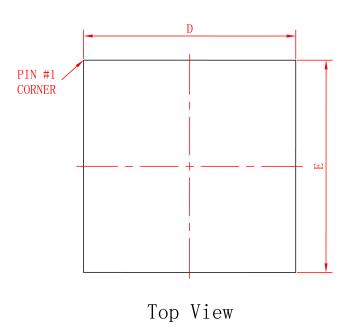
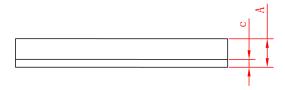


Figure 3: ESP32-PICO-D4 Module Schematics

6. Peripheral Schematics


Figure 4: ESP32-PICO-D4 Module Peripheral Schematics

7. Package Information

D1
H PIN #1
25
Bottom View

1.1	Dimension in mm			Dimension in inch		
symbol	MIN	NOM	MAX	MIN	NOM	MAX
A	0.840	0. 940	1.040	0.033	0.037	0.041
С	0. 220	0. 260	0.300	0.009	0.010	0.012
D	6.900	7.000	7. 100	0. 272	0. 276	0. 280
Е	6.900	7.000	7. 100	0. 272	0. 276	0. 280
D1	5. 300	5. 400	5. 500	0. 209	0. 213	0. 217
E1	5. 300	5. 400	5. 500	0. 209	0. 213	0. 217
Н		0.300			0.012	
H1	-	0.300			0.012	
L	0. 325	0.400	0. 475	0.013	0.016	0.019
L1	0.000	0.075	0. 150	0.000	0.003	0.006
е		0.500			0.020	
b	0. 200	0. 250	0.300	0.008	0.010	0.012

Side View

Figure 5: ESP32-PICO-D4 Package

8. Learning Resources

8.1 Must-Read Documents

The following link provides documents related to ESP32.

ESP32 Datasheet

This document provides an introduction to the specifications of the ESP32 hardware, including overview, pin definitions, functional description, peripheral interface, electrical characteristics, etc.

ESP32 Technical Reference Manual

The manual provides detailed information on how to use the ESP32 memory and peripherals.

ESP32 Hardware Resources

The zip files include the schematics, PCB layout, Gerber and BOM list of ESP32 modules and development boards.

• ESP32 Hardware Design Guidelines

The guidelines outline recommended design practices when developing standalone or add-on systems based on the ESP32 series of products, including ESP32, the ESP-WROOM-32 module, and ESP32-DevKitC—the development board.

• ESP32 AT Instruction Set and Examples

This document introduces the ESP32 AT commands, explains how to use them, and provides examples of several common AT commands.

8.2 Must-Have Resources

Here are the ESP32-related must-have resources.

• ESP32 BBS

This is an Engineer-to-Engineer (E2E) Community for ESP32 where you can post questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

• ESP32 Github

ESP32 development projects are freely distributed under Espressif's MIT license on Github. It is established to help developers get started with ESP32 and foster innovation and the growth of general knowledge about the hardware and software surrounding ESP32 devices.

• ESP32 Tools

This is a webpage where users can download ESP32 Flash Download Tools and the zip file "ESP32 Certification and Test".

• ESP32 IDF

This webpage links users to the official IoT development framework for ESP32.

ESP32 Resources

This webpage provides the links to all available ESP32 documents, SDK and tools.